
LLNL-CONF-666780

Particle Communication and Domain
Neighbor Coupling: Scalable Domain
Decomposed Algorithms for Monte Carlo
Particle Transport

M. J. O'Brien, P. S. Brantley

January 30, 2015

NECDC
Los Alamos, NM, United States
October 20, 2014 through October 24, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

NECDC 2014 Proceedings 1

Particle Communication and Domain Neighbor Coupling:
Scalable Domain Decomposed Algorithms for Monte Carlo

Particle Transport

Matthew O’Brien and Patrick Brantley
Lawrence Livermore National Laboratory, Livermore, CA

Topic 20.3: Computer Science: Performance/Scaling/Optimization.

October 20, 2014

In order to run Monte Carlo particle transport calculations on
new supercomputers with hundreds of thousands or millions of
processors, care must be taken to implement scalable algorithms. This
means the algorithms must continue to perform well as the processor
count increases. In this paper, we examine the scalability of: 1) globally
resolving the particle locations on the correct processor, 2) deciding that
particle streaming communication has finished, and 3) efficiently
coupling neighbor domains together with different replication levels.

We have run domain decomposed Monte Carlo particle transport
on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia
supercomputer and observed scalable results that agree with our
theoretical predictions. These calculations were carefully constructed to
have the same amount of work on every processor, i.e. the calculation is
already load balanced. We also examine load imbalanced calculations
where each domain’s replication level is proportional to its particle
workload. In this case we show how to efficiently couple together
adjacent domains to maintain within workgroup load balance and
minimize memory usage.

Introduction
Mercury is LLNL’s current generation Monte Carlo particle transport code. Some of Mercury’s
main features are:

 Solves dynamic neutron transport and criticality eigenvalue problems
 Also has charged particle and gamma transport capability
 Written in C++, python user interface, massively parallel, distributed memory MPI and

shared memory OpenMP
 Parallelized via domain decomposition and domain replication

Mercury has been run domain decomposed on 221 = 2,097,152 MPI processes on the IBM
BG/Q Sequoia supercomputer. Many of the major parallel algorithms have been rewritten to be
scalable to large processor counts. We define an algorithm to be scalable if it continues to
perform well as the number of processors increases. An example of a scalable algorithm would
have run time proportional to the logarithm of the number of processors. An example of a non-
scalable algorithm would be an algorithm that has run time proportional to the number of
processors. Practically speaking, as long as an algorithm consumes a small enough fraction of the

NECDC 2014 Proceedings2

total run time, we may tolerate non-scalable algorithms if they do not affect overall performance
significantly. If a non-scalable algorithm takes a significant fraction of the total runtime, then the
algorithm needs to be rewritten to be scalable (if possible).

This paper discusses some of the parallel algorithms that we have rewritten to be
scalable. The first section describes the parallel MPI model used in Mercury. The next section
describes globally resolving particle locations on the correct processor. This can happen for
“source” particles that may be created on any processor through sampling a user defined
probability distribution function. The source particle must be communicated to the processor that
owns the background domain before particle transport can take place.

The next section is on deciding when particle streaming communication has finished.
The algorithm has asynchronous particle streaming communication along with processing
particles and sending messages up and down a communication tree to decide if every particle that
started has finished tracking.

The last section describes “domain neighbor replication coupling”, which considers how
to efficiently couple adjacent domains that have different replication levels (the replication level
of a domain is how many processors are assigned to the domain to evenly divide the particle
workload for that domain). Finally we present our conclusions and comment on the future
challenges that face the project.

Table 1: Modern Supercomputing History at Lawrence Livermore National
Laboratory.

Date Computer Number of Processors

1998 Blue 5,856

2001 White 8,192

2005 Purple 12,544

2004 BlueGene/L 65,636

2009 Dawn 147,456

2012 Sequoia 1,572,864

Mercury’s Parallel MPI Model
Mercury has two parallel models: domain decomposition and domain replication. Mercury

also has a hybrid domain decomposition + domain replication parallel model that is used for load
balancing the problem.

 Domain decomposition partitions geometry.

 Domain replication

o Distributes particles within a domain.

o Load balancing: Replication level is proportional to particle workload.

NECDC 2014 Proceedings 3

Figure 1 plots the Monte Carlo particles by processor and provides an illustration of
Mercury’s parallel model. The problem has 6 domains and is run on 12 processors. Particles are
colored by processor. Domains that have more computational work have a higher replication
level, and we see more colors in those domains, representing the processors working on those
particles.

Figure 1: Particles are colored by processor. Some domains have more
processors than others, depending on the domain’s workload.

Globally Resolving Particle Locations On The Correct
Processor

This section examines the question of how to communicate particles to the correct
processor if they were created on another processor. This is not particle streaming
communication where particles travel from one domain to an adjacent domain. Here we are
considering creating a particle whose coordinate was created by sampling from a user defined
probability distribution function (PDF). All processors sample particles from the PDF and the
coordinate may end up anywhere in the problem, not necessarily on the domain that the processor
owns. So particles need to be communicated to the processor that owns the background domain
for that particle.

NECDC 2014 Proceedings4

Here is the algorithm for communicating particles to the correct processor:

 Each processor has the bounding box of every domain.

 If a processor does not own a particle, send the particle to all candidate domains (the
particle is within the domain’s bounding box).

 Instead of linearly searching through all bounding boxes, store the bounding boxes in a
space partitioning tree, enabling faster searches.

Improved Searching for Candidate Domains:

 Old algorithm linearly searched through all of the bounding boxes of every domain.

 New algorithm stores the domain bounding boxes in a space partitioning tree for faster
searches. (Disadvantage: still need to store all of the bounding boxes of every domain)

 Partition 1 dimension at a time. A bounding box becomes an interval in 1 dimension.

Figure 2: Illustration of dividing 1 dimensional intervals by a partition. Store
intervals in “left” child if min < partition and store intervals in “right” child if max ≥

partition. Some intervals will be stored in both “left” and “right” children.

To investigate the performance of the search algorithms, we use a spherical surface
source test problem as shown in Figure 3. We run a scaling study by increasing the number of
domains from 400 to 102,400.

Partitionmin < partition max ≥ partition

Interval
min max

Search Algorithm():
if leaf node:

search through intervals
else:

if coord < partition:
search left

else:
search right

NECDC 2014 Proceedings 5

Figure 3: Green circle shows the position of the spherical surface source.
Background geometry is colored by domain.

Figure 4 shows the scaling timing results. We are comparing the new Tree Search
method with the old Linear Search method. The new method scales much better. The old linear
search method has to search through all of the domains to find the candidate domains that contain
the particle’s coordinate. The tree search method can ignore more of the domains by ruling them
out as impossible intersections.

Figure 4: Scaling study results for new Tree Search compared to old Linear
Search.

Table 2 shows the data from Figure 4 along with the speedup. For 102,400 domains, the
Tree search is 30 times faster than the linear search!

0.00

5.00

10.00

15.00

20.00

25.00

256 2048 16384

W
a

ll
 T

im
e

 [
S

e
co

n
d

s]

Number of Domains

Global Particle Find Time vs. Number of
Domains

Linear Search

Tree Search

NECDC 2014 Proceedings6

Table 2: Timing data from scaling study.

Domains
Linear Search
[seconds]

Tree Search
[seconds] Speedup

400 0.11 0.05 2.3

1,600 0.31 0.06 5.5

6,400 1.12 0.09 12.5

25,600 4.48 0.22 20.4

102,400 20.81 0.69 30.3

Figure 4 and Table 2 are reporting on the total time for comparing the two algorithms.
The total time has 2 components, initialization time (to construct the data structure for searching)
and search time (the time to actually search through the data structure).

Total Time = Initialization Time + Search Time

Figure 5 examines each of these components independently. The initialization time for
the tree algorithm is slower than the linear algorithm (orange curves) since we must construct a k-
d tree out of the domain bounding boxes. But once the data structures are constructed, searching
the tree is much faster than the linear search (purple curves).

Figure 5: Scaling study results for initialization and search phases of calculation.

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

256 2048 16384 131072

W
a

ll
 T

im
e

 [
S

e
co

n
d

s]
 (

L
o

g
 S

ca
le

)

Number of Domains (Log Scale)

Search Only and Initialization Time vs.
Number of Domains

Linear Search Only

Tree Search Only

Linear Search
(Initialization)

Tree Search
(Initialization)

NECDC 2014 Proceedings 7

Table 3 shows the detailed timing breakdown of the search phase only and the
initialization phase only. At 102,400 domains, the search only phase is 1,274 times faster for the
tree algorithm compared to the linear search algorithm. But it is more expensive to construct the
tree than the linear data structure, so the total speedup is only 30X.

Table 3: Detailed timing data from scaling study.

Domains
Linear
(total)

Tree
(total)

Speedup
(total)

Linear
Search
Only

Tree
Search
Only

Speedup
(Search
Only)

Linear
(Initialization)

Tree
(Initialization)

400 0.11 0.05 2.3 0.07 0.01 7.3 0.04 0.04

1,600 0.31 0.06 5.5 0.27 0.01 27.6 0.04 0.05

6,400 1.12 0.09 12.5 1.07 0.01 87.3 0.05 0.08

25,600 4.48 0.22 20.4 4.41 0.01 324.1 0.07 0.21

102,400 20.81 0.69 30.3 20.71 0.02 1273.8 0.10 0.67

Deciding That Particle Streaming Communication Has
Finished

Each processor is processing the particles that it owns and asynchronously
sending/receiving MPI messages to/from adjacent domains when particles reach domain
boundaries. It is difficult to know when the calculation has finished. A processor may
have finished all of the particles it owns, but it does not know if it will receive more
incoming particles. One way to know that the calculation has completed is when the total
number of particles started (summed over all processors) equals the total number of
particles finished (summed over all processors). The idea is to try to maximize the
overlap of communication and computation so the calculation can run efficiently.

We are using an algorithm based on Brunner and Brantley, 2009. The idea of the
algorithm is to use non-blocking reduce and broadcast operations concurrently as
particles are tracking. We have found that this algorithm works well for load balanced
problems, but load imbalanced problems can introduce difficulties. A parent and child in
the communication tree may have different workloads which may cause the child to send
too many MPI messages to the parent, exhausting internal MPI resources. We have tried
to ameliorate this by introducing a user-settable parameter: Issend_Period, which
controls how often we use MPI_Issend (note the extra “s”) instead of MPI_Isend.
MPI_Issend() enforces synchronization between the sender and receiver (receiver must
have started receiving before MPI_Issend() completes), whereas MPI_Isend() can return
a request handle that has completed as long as MPI has buffered the message, making no
claim at all about the receiver.

Figure 6 shows scaling study results for an idealized, perfectly load balanced
problem run up to 221 = 2,097,152 domains (each run has: number of domains = number
of processors).

NECDC 2014 Proceedings8

Figure 6: Weak scaling study up to 221 = 2,097,152 processors for a load balanced
test problem.

We have also implemented a very simple blocking test for done algorithm that
just calls MPI_Allreduce() to compute the total number of particles that started tracking
and the total number of particles that finished tracking. When these two numbers are
equal (summing over all processors), then the calculation has finished. This algorithm is
beautifully simple, but MPI_Allreduce() is a blocking algorithm which does not allow
particle streaming communication or particle tracking to take place until the algorithm
returns. MPI 3.0 has non-blocking collective calls, so we use MPI_Iallreduce() when it is
available. The Sequoia supercomputer does not use MPI 3.0 by default so we have not
used the non-blocking MPI_Iallreduce() on Sequoia yet. If the non-blocking particle start
count equals the non-blocking particle finished count, then we call the blocking
MPI_Allreduce() to make sure the counts agree. Particle transport is done when the
blocking counts agree.

We have run small scaling studies with the MPI 3.0 non-blocking collective call
MPI_Iallreduce. The results look promising. We plan on running a large scaling study
using the MPI_Iallreduce algorithm. If that algorithm scales well, then we will switch to
that as our default algorithm. This algorithm is very simple to implement, and we hope
that it will scale similarly to the more complicated “hand coded” Brunner and Brantley
algorithm. So we hope to have the best of both worlds: simplicity and good performance.

Neighbor Replication Coupling
If two adjacent domains have the same replication level, then there is a simple and

efficient way to couple them together: have each replica of one domain couple to exactly one
replica of the other domain. But if the replication levels are unequal for adjacent domains, then it

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

6 8 10 12 14 16 18 20

W
a

ll
 T

im
e

 [
S

e
co

n
d

s]

Log2(Num_Processors)

Tracking Time vs. Log2(Num_Processors)

NECDC 2014 Proceedings 9

is more challenging to come up with a memory efficient and load balanced coupling of the
adjacent domains.

Figure 7 shows two adjacent domains with each domain replicated 4 times. Figure 7(b)
shows a “sparse” way to couple the replicas together and Figure 7(c) shows a full “crossbar”
coupling between the domains. The crossbar coupling is load balanced for uneven replication
levels, but it requires a large amount of memory.

Figure 7: (a) Domain replication coupling. (b) Sparse. (c) Crossbar.

Within cycle neighbor induced load imbalance can happen for poorly constructed sparse
communication graphs. Figure 8 shows this where one domain is replicated 5 times and an
adjacent domain is replicated 4 times. In the case of uneven domain replication coupling, it is
possible to have two domains communicating all of their particles to a single adjacent domain,
which ends up giving twice as much work to one replica of the adjacent domain, which causes
within cycle neighbor induced load imbalance.

Figure 8: (a) Equal domain replication coupling and (b) unequal domain replication
coupling.

Adjacent
Domain Domain

Adjacent
Domain Domain

Domain
Adjacent
DomainR

e
pl
ic
at
io

NECDC 2014 Proceedings10

Figure 9 shows that crossbar coupling has better parallel efficiency than sparse coupling.
This problem has a fixed number of foremen, 32, so by increasing the number of processors we
give the load balancer more worker processors to do a better job of load balancing. Parallel
efficiency should increase with number of processors. Parallel efficiency does increase for the
Crossbar algorithm, but it decreases with the Sparse algorithm. This is an indication of the within
cycle neighbor induced load imbalance.

Figure 9: Parallel efficiency scaling study comparing Crossbar and Sparse
neighbor replication coupling.

Figure 10 shows the crossbar coupling requires an ever increasing amount of memory as
we increase the replication level in this test problem. The average memory usage for the sparse
algorithm is acceptable, but the max memory usage for the sparse algorithm is still scaling poorly.

Figure 10: Memory usage scaling study comparing Crossbar and Sparse neighbor
replication coupling.

0%

20%

40%

60%

80%

100%

64 256 1024

P
a

ra
ll

e
l E

ff
ic

ie
n

cy

Number of Processors

Parallel Efficiency vs. Number of
Processors

Crossbar

sparse

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

3.50E+02

6 7 8 9 10 11

M
e

m
o

ry
 U

sa
g

e
 [

M
B

]

Log2(Num_Processors)

Memory Usage vs.
Log2(Num_Processors)

crossbar ave_memory

crossbar max_memory

Sparse ave_memory

Sparse max_memory

NECDC 2014 Proceedings 11

So our goal is to develop an algorithm that minimizes memory usage (the number of
connection edges) and is 100% load balanced when sending particles to adjacent domains. This
requires sending an equal number of particles to each replica (which implies 100% load balanced
within the group of replicated processors).

Figure 11 shows a comparison of four different algorithms for neighbor replication
coupling. The first three algorithms all use uniform outgoing edge weights. That is, they simply
“round robin” the outgoing particles evenly over all of the outgoing edges. The Variable Weight
algorithm uses non-uniform outgoing weights that represent the probability that a particle gets
sent along each edge. The outgoing weights are calculated so that the total incoming weight to
each adjacent domain is equal, so we have 100% load balance efficiency within each workgroup.
Note that Figure 11(d) shows outgoing edge weights. The sum of the incoming edge weight
should be equal for all replicas on the left side (∑incoming=1.5), and equal for all replicas on the
right side (∑incoming=2/3).

(a) Crossbar (b) Divide and Conquer (c) Sparse (d) Variable Weight

Figure 11: Four different neighbor replication methods.

Variable weight improves parallel efficiency and reduces memory usage. The variable
weight algorithm is very similar to the recursive Euclidean Algorithm for computing the greatest
common divisor GCD of two numbers (m, n). m is the replication level of one domain and n is
the replication level of an adjacent domain. Without loss of generality, assume m ≤ n. If m
divides n evenly, then just assign n/m outgoing edges from m to n. But if m does not evenly
divide n, then we have to deal with the remainder and fractional weight edges.

Figure 12 shows the parallel efficiency for the 4 neighbor replication methods. We see
that the Crossbar and Variable Weight methods have the highest parallel efficiency.

2/3

1/3

1/2

1/2

NECDC 2014 Proceedings12

Figure 12: Parallel Efficiency for the four neighbor replication methods.

Figure 13 shows the Maximum Processor memory usage for each of the 4 neighbor replication
methods. The Crossbar memory usage grows extremely quickly; the problem on 212 processors
could not run because it could not fit in memory. Even the variable weight method shows non-
scaling behavior in the max processor memory usage. But this memory usage is not due to the
variable weight algorithm, it is due to the num_foremen > 1 load balancing algorithm (we are
currently working on improving the memory usage of that algorithm).

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

6 8 10

P
a

ra
ll

e
l E

ff
ic

ie
n

cy

Log2(Num_Processors)

Parallel Efficiency vs. Number of
Processors

Crossbar

Sparse

Divide & Conquer

Variable Weight

NECDC 2014 Proceedings 13

Figure 13: Max processor memory usage for the four neighbor replication
methods.

Conclusions
We have rewritten our major parallel domain decomposed algorithms to be scalable. We

discussed the following algorithms in this paper:

• Global Particle Find

• Test for Done

• Domain Neighbor Replication Coupling

A more complicated, multi-step “Global Particle Find” algorithm was discussed in
previous papers, but in this paper we described a simple scalable “tree search” algorithm to search
through a tree of every domain’s bounding box. The construction of the tree is not scalable, since
it requires assembling the bounding box of every domain in the problem, but the step is fast
enough that we can tolerate it.

We have described a very simple MPI_Iallreduce() algorithm for deciding that particle
streaming communication has finished. We have not yet carried out a large scaling study of this
algorithm, but are hopeful that it will scale as well as the “hand coded” algorithm. We hope to
replace the complicated “hand coded” algorithm with the MPI 3.0 call to MPI_Iallreduce().

The domain neighbor replication coupling turned out to be an important algorithm for
scaling, and we were able to design an algorithm that was both 100% load balanced and
minimized memory usage in terms of total number of connections to the adjacent domain. The
algorithm uses a recursive Euclidean GCD type algorithm for constructing a bipartite graph
between the adjacent domains, calculating variable edge weights to ensure load balancing for
sending particles to the adjacent domain.

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

3.50E+02

6 7 8 9 10 11

M
e

m
o

ry
 U

sa
g

e
 [

M
B

]

Log2(Num_Processors)

Max Memory Usage vs.
Log2(Num_Processors)

Crossbar max_memory

Sparse max_memory

Divide & Conquer
max_memory

Variable Weight
max_memory

NECDC 2014 Proceedings14

Some of our special purpose algorithms are still not completely scalable. Some aspects
of these algorithms still need to be made scalable:

• Embedded Mesh/CG problems

• Criticality Probability and Extinction Probability

• Tracking on a mesh with gaps and overlaps

This will be the subject of future work as we attempt to make all aspects of the code scalable to
large processor counts.

This paper has been released with document number LLNL-CONF-666780.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

References
1. P. Brantley and M. McKinley, "Mercury Web Site," (2011). [Online]. Available:

https://wci.llnl.gov/codes/mercury/.

2. O’Brien, Matthew and Brantley, Patrick. Scalable Algorithms for Domain Decomposed
Monte Carlo Particle Transport. Presented at Los Alamos National Laboratory, October
22, 2014. LLNL-PRES-784999.

3. O’Brien, Matthew. Scalable Domain Decomposed Monte Carlo Particle Transport.
PhD Dissertation, UC Davis. LLNL-TH-647500. 2014.

4. Brunner, T. and Brantley, P. An efficient, robust, domain-decomposed algorithm for
particle Monte Carlo. Journal of Computational Physics. 2009.

5. G. Greenman, M. O'Brien, R. Procassini and K. Joy, "Enhancements to the
Combinatorial Geometry Particle Tracker in the Mercury Monte Carlo Transport Code:
Embedded Meshes and Domain Decomposition," in Proceeding from the ANS
Mathematics and Computation 2009 Meeting, Saratoga Springs, (2009).

6. M. O'Brien, J. Taylor and R. Procassini, "Dynamic Load Balancing of Parallel Monte
Carlo Transport Calculations," in ANS Monte Carlo 2005: The Monte Carlo Method:
Versatility Unbounded In A Dynamic Computing World, Chattanooga, TN, (2005).

7. R. Procassini, M. O'Brien and J. Taylor, "Load Balancing of Parallel Monte Carlo
Transport Calculations," in Mathematics and Computation, Supercomputing, Reactor
Physics and Nuclear and Biological Application, Palais des Papes, Avignon, France,
(2005).

8. M. J. O'Brien, P. S. Brantley and K. I. Joy, "Scalable Load Balancing For Massively
Parallel Distributed Monte Carlo Particle Transport," in International Conference on
Mathematics and Computational Methods Applied to Nuclear Science & Engineering
(M&C 2013), Sun Valley, Idaho, 2013.

9. M. J. O'Brien, S. A. Dawson, P. S. Brantley and K. I. Joy, "Scalable Algorithms for
Monte Carlo Particle Transport," in LLNL-CONF-643319, Livermore, 2012.

